Car problems - find the best solution

Clerk Cycle 1879 6 Day Cycle Four-stroke engine (Otto cycle) Six-stroke engine By type of ignition Compression-ignition engine Spark-ignition engine (commonly fo

Car problems - find the best solution oil for Daewoo

Classification

Classification

There are several possible ways to classify internal combustion engines.

Reciprocating:

By number of strokes

Two-stroke engine

Clerk Cycle 1879 6
Day Cycle

Four-stroke engine (Otto cycle)
Six-stroke engine

By type of ignition

Compression-ignition engine
Spark-ignition engine (commonly found as gasoline engines)

By mechanical/thermodynamical cycle (these 2 cycles do not encompass all reciprocating engines, and are infrequently used):

Atkinson cycle
Miller cycle

Rotary:

Wankel engine

Continuous combustion:

Gas turbine
Jet engine

Rocket engine
Ramjet

The following jet engine types are also gas turbines types:

Turbojet
Turbofan
Turboprop



Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


Vehicles tuned

Activities such as tuning cars is a real treat for those who know the automotive industry. Passionate about motorcycles or cars will not have any fun in connection with the exchange of automotive parts, which is not always as easy as it might seem. What's more, conducted in-house tuning of the car is even reason for pride for the majority of people who have taken such a project alone. One has to have special skills to create something truly beautiful, yet durable, the speed with which moves the car or motorcycle. The effect is sometimes surprising and worth spending even a lot of time over our vehicle, later to gain recognition.


2-stroke engines

2-stroke engines
Main article: 2-stroke engine

The defining characteristic of this kind of engine is that each piston completes a cycle every crankshaft revolution. The 4 processes of intake, compression, power and exhaust take place in only 2 strokes so that it is not possible to dedicate a stroke exclusively for each of them. Starting at TDC the cycle consist of:

Power: While the piston is descending the combustion gases perform work on it?as in a 4-stroke engine?. The same thermodynamic considerations about the expansion apply.
Scavenging: Around 75° of crankshaft rotation before BDC the exhaust valve or port opens, and blowdown occurs. Shortly thereafter the intake valve or transfer port opens. The incoming charge displaces the remaining combustion gases to the exhaust system and a part of the charge may enter the exhaust system as well. The piston reaches BDC and reverses direction. After the piston has traveled a short distance upwards into the cylinder the exhaust valve or port closes; shortly the intake valve or transfer port closes as well.
Compression: With both intake and exhaust closed the piston continues moving upwards compressing the charge and performing a work on it. As in the case of a 4-stroke engine, ignition starts just before the piston reaches TDC and the same consideration on the thermodynamics of the compression on the charge.

While a 4-stroke engine uses the piston as a positive displacement pump to accomplish scavenging taking 2 of the 4 strokes, a 2-stroke engine uses the last part of the power stroke and the first part of the compression stroke for combined intake and exhaust. The work required to displace the charge and exhaust gases comes from either the crankcase or a separate blower. For scavenging, expulsion of burned gas and entry of fresh mix, two main approaches are described: Loop scavenging, and Uniflow scavenging, SAE news published in the 2010s that 'Loop Scavenging' is better under any circumstance than Uniflow Scavenging.6

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine